Table of Contents
- Introduction
- Why Use Qiskit for QML?
- Qiskit Machine Learning Overview
- Installing and Setting Up Qiskit ML
- Qiskit Data Encoding Techniques
- Feature Map Circuits for Classification
- Variational Quantum Classifiers (VQC)
- Building a Simple Quantum Classifier
- Training and Evaluation
- Using Quantum Kernels with SVM
- Multiclass Classification Strategies
- Regression with Quantum Circuits
- Hardware-Aware Simulation in Qiskit Aer
- Running QML Models on Real IBM Quantum Hardware
- Integrating Classical Preprocessing with QML
- Visualizing Quantum Decision Boundaries
- Parameter Shift Gradients and Optimization
- Challenges and Best Practices
- Applications and Case Studies
- Conclusion
1. Introduction
Qiskit is IBM’s open-source quantum computing SDK. Its qiskit-machine-learning
module provides tools to build, train, and evaluate quantum machine learning models using simulators or real quantum hardware.
2. Why Use Qiskit for QML?
- Direct access to IBM QPUs
- Integration with Qiskit Terra and Aer
- Native support for quantum feature maps, VQCs, and kernels
- Strong documentation and community support
3. Qiskit Machine Learning Overview
- Core components include quantum classifiers, regressors, and kernel-based learners
- Seamless integration with NumPy, SciKit-learn, and Qiskit Aer backends
4. Installing and Setting Up Qiskit ML
pip install qiskit qiskit-machine-learning
5. Qiskit Data Encoding Techniques
- Feature maps transform classical data into quantum states
- Common encodings: ZZFeatureMap, PauliFeatureMap, ZFeatureMap
6. Feature Map Circuits for Classification
from qiskit.circuit.library import ZZFeatureMap
feature_map = ZZFeatureMap(feature_dimension=2, reps=2)
7. Variational Quantum Classifiers (VQC)
- Learn trainable quantum parameters to minimize classification loss
- Combine feature map with variational ansatz
8. Building a Simple Quantum Classifier
from qiskit_machine_learning.algorithms import VQC
from qiskit_machine_learning.circuit.library import RawFeatureVector
from qiskit.circuit.library import TwoLocal
ansatz = TwoLocal(2, ['ry', 'rz'], 'cz', reps=3)
vqc = VQC(feature_map=feature_map, ansatz=ansatz, optimizer='SPSA')
9. Training and Evaluation
- Use datasets like Iris, Breast Cancer, or synthetic XOR
- Split data and train using
.fit()
and.score()
methods
10. Using Quantum Kernels with SVM
from qiskit_machine_learning.kernels import QuantumKernel
from sklearn.svm import SVC
qkernel = QuantumKernel(feature_map=feature_map)
kernel_matrix = qkernel.evaluate(x_train, x_train)
svc = SVC(kernel='precomputed').fit(kernel_matrix, y_train)
11. Multiclass Classification Strategies
- One-vs-Rest or One-vs-One approaches with VQC or Quantum SVM
- Wrap QML model inside
sklearn.multiclass.OneVsRestClassifier
12. Regression with Quantum Circuits
- Use
qiskit_machine_learning.algorithms.VQR
for variational quantum regression
13. Hardware-Aware Simulation in Qiskit Aer
from qiskit_aer import AerSimulator
sim = AerSimulator(noise_model=noise, method='statevector')
14. Running QML Models on Real IBM Quantum Hardware
- Log in to IBMQ:
from qiskit_ibm_provider import IBMProvider
provider = IBMProvider()
backend = provider.get_backend("ibmq_qasm_simulator")
15. Integrating Classical Preprocessing with QML
- Standardize or normalize input features
- Combine with PCA or feature selection before encoding
16. Visualizing Quantum Decision Boundaries
- Plot fidelity heatmaps or measurement probability landscapes
- Use matplotlib and Qiskit circuit sampling
17. Parameter Shift Gradients and Optimization
- Support for analytic gradients using parameter-shift rule
- Optimizers: SPSA, COBYLA, L-BFGS-B
18. Challenges and Best Practices
- Qubit count and circuit depth affect accuracy
- Use shallow ansatz for NISQ devices
- Avoid overfitting via regularization or shot averaging
19. Applications and Case Studies
- Quantum-enhanced finance and healthcare prediction
- Quantum kernel for molecule property classification
20. Conclusion
Qiskit offers a versatile and accessible platform for experimenting with quantum machine learning. From simulators to real hardware, its tools support rapid prototyping and evaluation of quantum-enhanced models across a wide range of domains.